Telegram Group & Telegram Channel
Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP



tg-me.com/ds_interview_lib/287
Create:
Last Update:

Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/287

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека собеса по Data Science | вопросы с собеседований from br


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA